

THE 21ST INTERNATIONAL **OPERATIONS & MAINTENANCE** CONFERENCE IN THE ARAB COUNTRIES

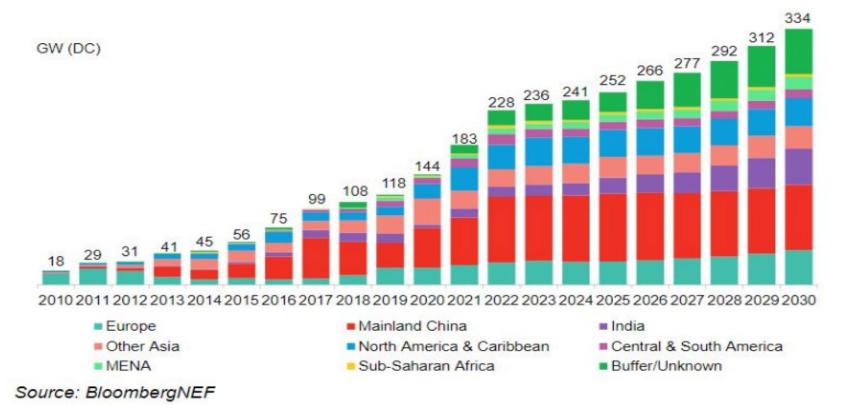
Integrating Deep Learning and Machine Learning for Defect Detection and Maintenance Prediction in Photovoltaic Systems

Predictive Analytics for Solar Energy Reliability

⑦ ⊗ @ © #OmaintecConf

An Initiative by

Organized by



The Bloomberg New Energy Finance (BNEF) reports of analysts expect newly installed PV capacity to be between 252 and 260 GW in 2025.

Commercial and industrial systems will also see their share increase, as these are becoming more and more profitable against the background of rising electricity prices and electricity shortages in the country.

Overview of PV System Challenges

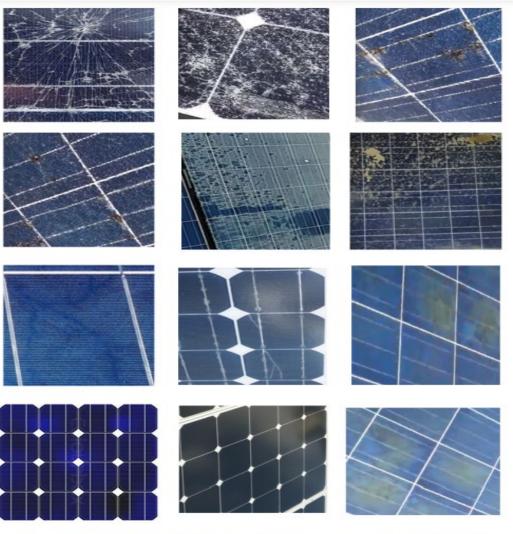
Here are some common types of defects (intrinsic, extrinsic) found in PV panels:

1.Micro-Cracks

2.PID (Potential Induced Degradation)

3.Snail Trails

4.Hot Spots

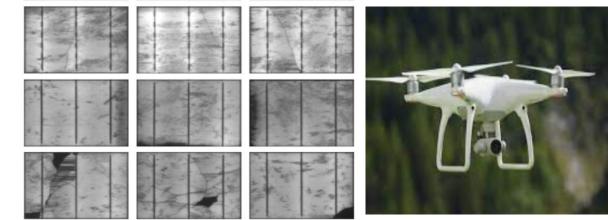

5.Soiling

6.Delamination and Discoloration

7.Corrosion

8.Cell Mismatch and Shading 8.Inverter and Junction Box Failures

Method	Process
Visual	Discoloration, surface soiling, browning,
Thermal	Thermal extraordinary heating
Electrical	Illuminated I-V curve measurement,
	Transmittance line diagnosis



Problem statement

- Regular monitoring and maintenance of PV panels are essential to detect these defects early and address them
 promptly.
- Traditionally, maintenance teams conduct visual inspections and use instruments like I-V curve tracers to detect anomalies.
- limitations: Time-consuming, Subjective, Intermittent, Reactive.
- Solution: the advanced predictive capabilities offered by data analysis, machine learning and deep learning. to predict when a failure is likely to occur and taking preventative measures before it happens.
- Advanced techniques like thermal imaging, electroluminescence, and the use of drones for inspection are increasingly employed to identify and analyze these defects efficiently.

Role of Machine Learning (ML) and Deep Learning (DL)

These technologies enable:

- Anomaly Detection
- Pattern Recognition
- Predictive Insights

AI ML NN DL

the word "deep" comes from the fact that DL algorithms are trained/run on deep neu ral networks. These are just neural networks with (usually) three or more "hidden" layers

General Artificial Intelligence (AI)

Narrow AI enabled by Machine Learning (ML)

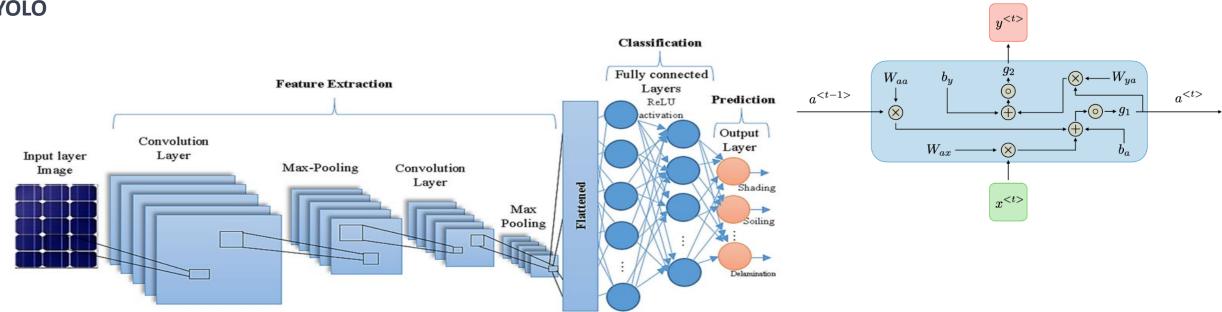
Neural Networks (NN)

Deep Learning (DL)

computers possessing the same characteristics of human intelligence, including reasoning, interacting, and thinking like we do

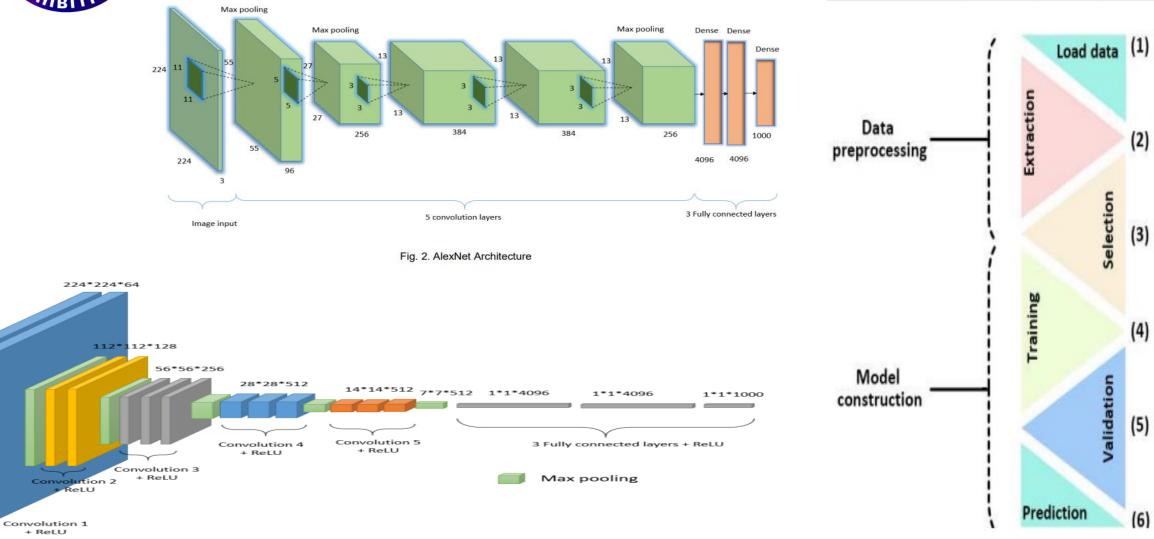
> technologies that can accomplish specific tasks such as playing chess, recommending your next Netflix TV show, and identifying spam emails

neural networks are a specific group of algorithms used for machine learning that model data using graphs of Artificial Neurons. Those neurons are a mathematical model that "mimics approximately how a neuron in the brain works"



Examples of AI models

Once data is collected, ML/DL algorithms come into play, offering advanced defect detection capabilities:


- Convolutional Neural Networks (CNNs)
- Recurrent Neural Networks (RNNs)
- Autoencoders

Transfer learning models

Our papers

BA-CNN: Enhancing Photovoltaic Cell Quality Evaluation and Anomaly Detection through Deep Learning

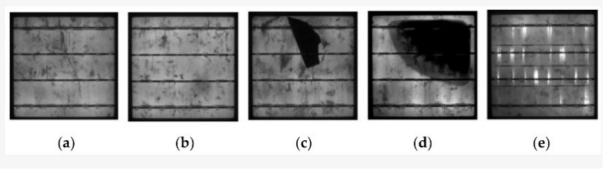
Eman Ashraf dept. of Electronics and Communications Engineering Faculty of Engineering Delta University for	Shady Yehia EL Mashad Associte Professor, Faculty of Engineering at Shoubra, Benha University	Kabeel A. E. ^{1,2} ¹ Faculty of Engineering, Delta University for Science and Technology, Gamasa, Egypt ² Mechanical Power	Warda M. Shaban dept. of Communications and Electronics Engineering Nile Higher Institute for Engineering and Technology, Artificial Intelligence Lab,
Science and Technology Gamasa, Egypt https://orcid.org/0000- 0003-0928-3580		Engineering Department, Tanta University, Tanta, Egypt <u>kabeel6@f-eng.tanta.edu.eg</u>	Mansoura, Egypt warda_mohammed@nilehi.edu.eg

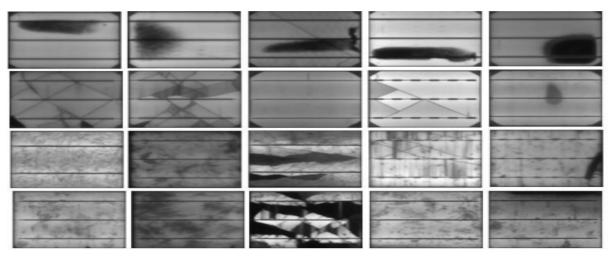
Integrating Deep Learning and Machine Learning for Defect Detection and Maintenance Prediction in Photovoltaic Systems

Eman Ashraf
dept. of Electronics and
Communications' Fact
Unit
TechEngineeringTechFaculty of Engineering2MeDelta University for
Gamasa, EgyptPrograhttps://orcid.org/0000-
0003-0928-3580ab

A.R. Habieeb^{1, 2} ¹ Faculty of Engineering, Delta University for Science and Technology, Gamasa, Egypt, ²Mechatronics Engineering Program, Faculty of Engineering, Mansura University, Mansura, Egypt abedrabiee@gmail.com

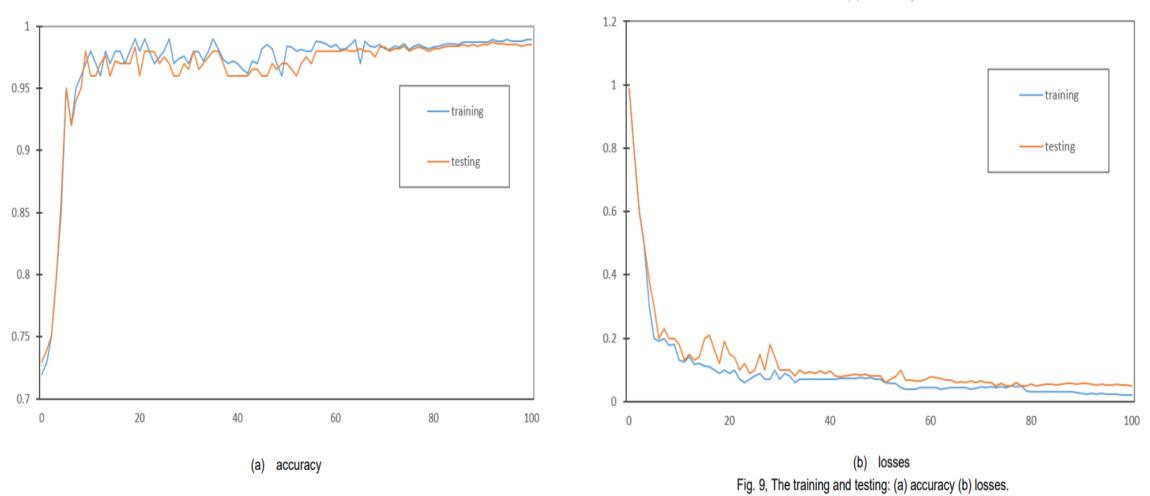
Kabeel A. E.^{1,2} ¹ Faculty of Engineering, Delta University for Science and Technology, Gamasa, Egypt ² Mechanical Power Engineering Department, Tanta University, Tanta, Egypt kabeel6@f-eng.tanta.edu.eg Warda M. Shaban dept. of Communications and Electronics Engineering Nile Higher Institute for Engineering and Technology, Artificial Intelligence Lab, Mansoura, Egypt warda_mohammed@nilehi.edu.eg


Data sets


These algorithms are trained on vast datasets, Example of public dataset that consists of highresolution electroluminescence (EL) images derived from both

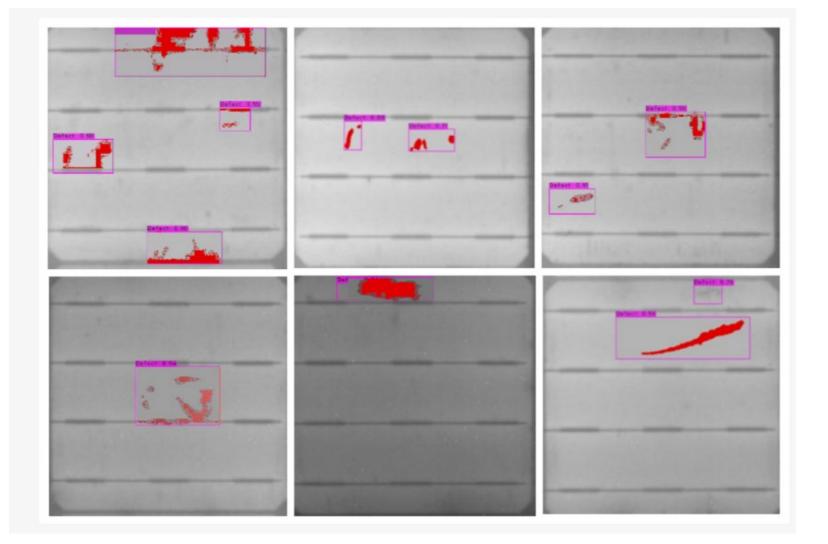
monocrystalline and polycrystalline PV modules

- **ELPV:** a total of 2,624 grayscale images, each with a resolution of 300×300 pixels and an 8-bit depth.
- PVEL-AD: contains 36,543 images with various internal defects and heterogeneous background. 10 different categories such as crack (line and star), finger interruption, black core, misalignment, thick line, scratch, fragment, corner, and material defect.

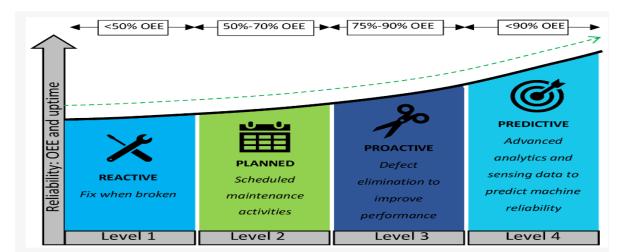

Figure 1. Different forms of defects in photovoltaic cells: (a) crack; (b) thick line; (c) fragment; (d) black core; (e) horizontal dislocation.

Results

.


GODO #OmaintecConf

MAINTEC Detecting PV Defects with ML/DL


GOD #OmaintecConf

Predictive Maintenance with AI

- To shift from reactive to proactive maintenance, The proposed Maintenance Prediction Model capitalizes on the previously localized defect regions from the defect detection process.
- The localized defect features are then utilized as inputs for a specialized maintenance prediction model.
- These attributes encapsulate critical information about the type, size, and severity of defects.
- Subsequently, the maintenance prediction model is trained to harness the relationship between extracted defect features and maintenance requirements.

Algorithm 3: maintenance prediction model

- 1: function MaintenancePredictionModel(defect_features, maintenance_data):
- 2: # Train the maintenance prediction model
 - model = train_maintenance_model(defect_features, maintenance_data)
- **3:** return model
- 4: function TrainMaintenanceModel(defect_features, maintenance_data):
- 5: # Prepare training data X_train = defect_features
 - y_train = maintenance_data
- 6: # Initialize and train the maintenance prediction model (SVM) model = initialize_model()
- 7: model.train(X_train, y_train)
- 8: return model
- 9: # Main process

defect_features = extract_defect_features(localized_defect_regions)

- **10:** maintenance_data = load_maintenance_data()
- **11:** maintenance_model = MaintenancePredictionModel(defect_features, maintenance_data)

Field Successes: ML/DL in Action

ORACLE

أدنوك تكمل بنجاح المرحلة الأولى من مشروعها للصيانة التنبؤية المعتمدة على الذكاء الاصطناعى

من المتوقع أن يسهم المشروع بخفض التكاليف بنسبة 20% بعد انتهاء مراحله الأربع في عام 2022

المشروع يأتي في إطار سعي أدنوك لاعتماد أحدث التقنيات المتطورة عبر مختلف مجالات ومراحل أعمالها لتعزيز كفاءة الأصول والارتقاء بالأداء

Oracle Maintenance

Oracle Fusion Cloud Maintenance is a connected, smart maintenance management solution. Powered by advanced technologies, it enables predictive maintenance and helps you increase reliability and uptime while reducing overall costs.

American 🔪

5. خطوط الطيران الأمريكية: تستخدم خطوط الطيران الأمريكية (American Airlines) تقنيات الذكاء الاصطناعي لتحسين عمليات الصيانة، حيث يتم استخدام الذكاء الاصطناعي للكشف عن الأعطال المحتملة في المحركات ومكونات الطائرة والتنبؤ بالصيانة اللازمة، وذلك لتقليل مدة التوقف الفني وتحسين كفاءة الطائرات.

Field Successes: ML/DL in Action

<u>RapidValue (Aspire Systems)</u> > <u>Case Studies</u> > Remote Monitoring & Predictive Maintenance App for a Solar Energy System

GreenPowerMonitor

Remote Monitoring & Predictive Maintenance App for a Solar Energy System

هيئة كهرباء ومياه دبي Dubai Electricity&Water Authority

نظام التحكم والفحص الذكي لـ BCS و AOI

يتميز نظام التحكم والاختبار الذكي الخاص بنا لـ BCS و IAO لإنتاج الألواح الشمسية بكفاءة عالية والدقة والتشعيل الآلي الكامل. خصوصاً، يتم استخدام نظام BCS من أجل التثبيت الدقيق للوحة وتجميع اللوحة بجودة عالية. يستخدم نظام AOI لاكتشاف عيوب اللوح، بما في ذلك الشقوق، الأضرار، والخ. يدمج نظام التحكم الذكي التقنيات المتطورة مثل الذكاء الاصطناعي (AI)، الخوارزمية المرئية، التحكم التلقائي لتعزيز أتمتة الإنتاج وكفاءته. يمكنه أيضًا تحديد الأخطاء المحتملة وتصحيحها لتقليل التكلفة والمخاطر. WORLD FUTURE ENERGY SUMMIT

DNV and GreenPowerMonitor, a DNV company, have developed a predictive maintenance system for solar inverters that uses machine learning models to represent an inverter's normal operation and to identify anomalous behaviour within new streaming data.

Field Successes: ML/DL in Action

Patent volumes related to intelligent predictive maintenance

Company	Total patents (2010 - 2022)	*	Prei larg
General Electric			
Schlumberger			
Halliburton			
Saudi Arabian Oil			
Ecolab			
Linde			
The Weir Group			
Baker Hughes			
Air Products and Chemicals			
Emerson Electric			

6000 #OmaintecConf

Here we present highlights from companies benefitting from PdM, including example successes, why they matter, and the chosen tools and methods.

- U.S. industrial products manufacturer
- Tennessee snack food manufacturer
- Louisiana alumina refinery
- San Diego energy utility
- Singapore rail operator
- Australian iron ore mine

THE 21ST INTERNATIONAL **OPERATIONS & MAINTENANCE** CONFERENCE IN THE ARAB COUNTRIES

THANK YOU!

6800 #OmaintecConf

An Initiative by

Organized by

EXICON International Group مجملوعة أكزيكون الدولية

المجلس العربي للتشغيل والصيانة Arab Operations & Maintenance Counci